
Provably-Correct Fault Tolerant Control with Delayed Information

Liren Yang and Necmiye Ozay

Abstract— In this paper, we study a class of hierarchical finite
transition systems representing a set of fault configurations,
and we consider synthesizing fault tolerant controllers for such
systems that lead to a graceful degradation as faults occur. In
previous work, the problem was solved under the assumptions
that (i) the specification for each fault configuration is of “reach-
avoid-stay” type, (ii) the knowledge of the fault occurrence is
immediate. We extend the previous work in two aspects. First,
we propose an algorithm that works for specifications given in
a more general fragment of linear temporal logic. Secondly, we
show how the proposed algorithm can be modified to synthesize
controllers that guarantee satisfaction of the specification even
in the presence of fault detection delays.

I. INTRODUCTION

Designing resilient systems that can operate in the pres-

ence of failures is crucial in many application domains. One

key aspect of resiliency is graceful degradation. That is,

we expect the system to satisfy certain (possibly relaxed)

requirements even when failures occur. In this paper, we

address this problem when the systems are modeled as a

hierarchy of non-deterministic transition systems, and the

requirements for different failure modes are given in linear

temporal logic.

In recent years, there has been significant amount of

research on synthesizing controllers that can guarantee that

the closed-loop system satisfies given logic specifications

[12], [4]. The problem we study in this paper and the

solution approach follows this line of work. In particular,

when faults can be detected and isolated instantaneously,

the problem can be reduced to a control synthesis problem

on a finite transition system, obtained by flattening the

hierarchical structure we start with, subject to temporal logic

constraints. By exploiting the fact that the occurrences of

faults can be represented by a directed acyclic graph leading

to a partial order, we propose an algorithm that avoids this

flattening step and obtain a more efficient solution. With

further assumptions on the specifications, soundness of the

proposed algorithm is proved.

In the second part of the paper, we focus on the case

where fault detection and isolation occur with an unknown

but bounded delay. This results in controller not having full

information of the state at decision time. Synthesis with

partial information is in general quite harder as it requires

an exponential power set construction to keep track of belief

states [5], [10], [15]. Delayed information is a special case

of partial information. We show how the algorithm proposed

in the first part can be modified to handle detection delays.

Authors are with the Dept. of EECS, Univ. of Michigan, Ann Arbor,
MI 48109, USA yliren,necmiye@umich.edu. This work is
supported in part by Ford Motor Co., DARPA and a NASA ECF award.

The main focus of the paper is to provide theoretical

analysis of the proposed algorithms and to highlight the type

of specifications that enable efficient synthesis in both full

information and delayed information settings. We provide

a toy example to demonstrate the ideas and leave larger

scale implementations on realistic system models (e.g., using

abstraction-based methods) for future work.

II. PRELIMINARIES

A. Notation

Let N be the set of nonnegative integers. For a finite set Σ,

a finite word w over Σ is a finite sequence of elements from

Σ, i.e., w = w(0)w(1)w(2) · · ·w(n) with w(t) ∈ Σ for all

0 ≤ t ≤ n. An ω-word w = w(0)w(1)w(2) · · · over Σ is an

infinite sequence of elements w(t) ∈ Σ. Let Σ∗ denote the

set of all the finite words over Σ, and Σω denote the set of

all ω-words over Σ. For an ω-word w = w(0)w(1)w(2) · · ·
and any n ∈ N, w(0) · · ·w(n) is called a prefix of w and

w(n)w(n+1)w(n+2) · · · is called a suffix of w. For a set

S ⊆ (Σω), we use pref(S) (resp. suff(S)) to denote the

set of prefixes (resp. suffixes) of ω-words from S.

B. Finite Transition System with Fault Configurations

Finite transition systems are the basic building blocks

of the overall system considered in this paper. A (timed)

finite transition system, denoted by TS, is a tuple (Q,A,→
, AP, L), where Q is a finite set of states, A is a finite set of

actions, →⊆ Q×A×Q is a transition relation, AP is a set of

atomic propositions, and L : Q → 2AP is a labeling function.

Particularly, we assume that a finite transition system TS
can start from any state in Q, and the transitions happen

only at time instant t ∈ N. An execution ρ of system TS
is an infinite sequence of pairs

(
q(0), a(0)

)(
q(1), a(1)

) · · · ,

where
(
q(t), a(t), q(t+ 1)

) ∈→. The ω-word wρ generated
by execution ρ is defined as wρ = L

(
q(0)

)
L
(
q(1)

)
, · · · .

In this paper we are interested in finite transition systems
with fault configurations (faulty systems for short), which is

the discrete analogue of the systems studied in [14]. Such

a system consists of a collection of different regular finite

transition systems (regular systems for short), each governing

the system transitions under a specific faulty situation, and

these different regular systems may degrade from one to

another in the order of their corresponding fault severity. In

what follows, we formally define a finite transition system

with fault configurations.
Let F = {f1, . . . , fM} be a finite set, each element fi is

called of a fault configuration, or a fault for short. A partial
order � is defined on set F to capture the severity of different
faults in F . That is, fi � fj means that fault fj is more
severe than or equal to fault fi, and fi ≺ fj means that fault

2017 IEEE 56th Annual Conference on Decision and Control (CDC)
December 12-15, 2017, Melbourne, Australia

978-1-5090-2873-3/17/$31.00 ©2017 IEEE 542

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 30,2022 at 02:43:25 UTC from IEEE Xplore. Restrictions apply.

fj is strictly more severe. We define the set of minimum
elements of E ⊆ F to be

min(E) := {fj ∈ E | �fi ∈ E s.t. fi ≺ fj}, (1)

and max(E) can be defined in a similar way. We will assume
F always has a unique minimum element that represents the
healthy configuration. By convention we always denote this
healthy configuration by f1. Finally we define the successors
of a fault fi ∈ F to be

succ(fi) := min
({fj ∈ F | fi ≺ fj}

)
. (2)

By definition, fault fj is a successor of fault fi if fj is more

sever than fi and there are no other faults in between.

Let F = {f1, . . . , fM} be a partially ordered set of fault

configurations, a finite transition system with the given fault

configurations, denoted by TSF, is a tuple (Q,F,A,→TS

,→F , AP, L), where

• Q, A, AP have the same meanings as the ones in a

regular finite transition systems, F is the given set of

fault configurations;

• →TS⊆ Q × F × A × Q is a transition relation that

describes the system’s evolution under some specific

fault;

• →F⊆ F × F is the transition relation of the faults,

and we assume that the transitions of faults always start

from healthy configuration f1, and that (fi, fj) ∈→F if

and only if (iff) fj ∈ {fi} ∪ succ(fi), a fault transition

(fi, fj) is called nontrivial if fi 	= fj ;

• L : Q× F → AP is the labeling function.

Similarly to regular systems, we define an execu-

tion ρ of system TSF to be an infinite sequence

of 3-tuples
(
q(0), f(0), a(0)

)(
q(1), f(1), a(1)

) · · · , where(
q(t), f(t), a(t), q(t+1)

) ∈→TS , and
(
f(t), f(t+1)

) ∈→F

for all t ∈ N. The ω-word wρ generated by execution ρ is

wρ = L
(
q(0), f(0)

)
L
(
q(1), f(1)

)
, · · · .

A few remarks regarding to the definition above are in

order. First, It might be helpful to think TSF as a hierarchical

transition system with M different regular finite transition

systems as subsystems. Each subsystem TSi is associated

with the fault configuration fi ∈ F of the same subscript. Ev-

ery TSi has a distinct transition relations →i:= {(q, a, q′) |
(q, fi, a, q

′) ∈→TS} and different labeling functions Li :=
L(·, fi). The transition of the overall system TSF can be seen

as being governed by →i that corresponds to the current fault

status, while transition relation →F describes the degradation

of governing subsystem TSi’ in case the fault status changes.

Note that, by definition of →F , a subsystem TSi either

maintains to be the current governing system or transits into

its successors. This means two things: first, the faults are

permanent, i.e., the system will never recover once the faults

occur; secondly, the system never “goes down” more than

two levels at once.

Secondly, by definition, TSF has a common state set

Q, atomic proposition set AP and action set A that is

shared by all of its subsystems TSi. Note that we may

have different control authority and atomic proposition of

interest under different fault configurations. However, the

assumption for common atomic proposition set and common

action set can be made without loss of generality. In case we

have different propositions AP i of interest in different fault

configurations, a common atomic proposition set AP can

be simply chosen to be
⋃M

i=1 AP i, and the difference can

be handled by defining non-surjective labeling function Li.

Moreover, the lack of control authority under more severe

fault configurations can be captured by a transition relation

→i that is not affected by some inactive control action a ∈ A.

Finally, note that the fault transition relation →F is beyond

our control, hence it introduces additional nondeterminism

into the system, and such nondeterminism can be combined

with that of a regular system—whose state set is Q×F—to

obtain the faulty system TSF. This means a faulty system is

nothing but a special type of regular finite transition system.

However, as will be presented in section IV, the special

structure of fault configurations can be leveraged to develop a

recursive synthesis process when the considered specification

is in certain from. We hence distinguish it from regular

systems.

C. Fault Detection with Delay

In this paper, we consider both fault detection with and

without delay. In reality, the faults may not be detected

immediately after their occurrence. Instead, a detector will

collect data from the system in an online manner and make

diagnosis based on these data. The detector reports a fault

whenever the collected data suggests that the current system

behavior is different enough from that of the healthy system,

and the fault is isolated whenever the system behavior differs

from those of other possible faulty models.

There is research to design such detectors based on model

invalidation approaches [8], [7]. In particular, such detectors

are guaranteed to detect and isolate the fault within time

T after its occurrence. T is a constant depending on the

difference between the considered faulty system and other

system models, and its value can be computed offline. Note

that the actual online fault detection may not take as long

as time T . Instead, T is only an upper bound for the actual

detection delay.

Also note that these fault detection techniques are devel-

oped for continuous state space models governed by differ-

ence equations. In this paper we consider finite transition

systems, which can be viewed as abstractions that simulate

some underlying continuous systems [12]. The delay upper

bounds for such abstractions can be obtained from offline

analysis of the underlying continuous systems. To be specific,

given a faulty system TSF with fault configuration set

F = {f1, · · · , fM}, let fi be arbitrary current fault, and

let fj ∈ succ(fi) be a possible succeeding fault. We assume

a fault detection delay of length Tj is required to isolate fault

fj from other faults in {fi} ∪ succ(fi) \ {fj}.

D. Linear Temporal Logic

We use linear temporal logic without next operator

(LTL\©) [3], [9] to specify the correct closed-loop system

behavior.

543

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 30,2022 at 02:43:25 UTC from IEEE Xplore. Restrictions apply.

1) Syntax of LTL\©: Let AP be an atomic propositions
set, the syntax of LTL\© formulas over AP is given by

ϕ ::= π | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U ϕ2, (3)

where π ∈ AP . With the grammar given in Eq. (3), we

define the other propositional and temporal logic operations

as follows: ϕ1∧ϕ2 := ¬(¬ϕ1∨¬ϕ2), ϕ1 → ϕ2 := ¬ϕ1∨ϕ2,

♦ϕ := True U ϕ, �ϕ := ¬♦¬ϕ.
2) Semantics of LTL\©: Given an infinite word w =

w(0)w(1)w(2) · · · ∈ (2AP)ω and an LTL\© formula ϕ, we

say ϕ holds for w at time t (or the word satisfies ϕ at time

t), denoted by w, t |= ϕ, if and only if ϕ holds for w(t)w(t+
1)w(t+ 2) · · · . By this we mean:

• w, t |= π iff π ∈ w(t),
• w, t |= ¬ϕ iff w, t 	|= ϕ,

• w, t |= ϕ1 ∨ ϕ2 iff w, t |= ϕ1 or w, t |= ϕ2,

• w, t |= ϕ1 U ϕ2 iff ∃s ≥ t : w, s |= ϕ2 and ∀t ≤ s′ <
s : w, s′ |= ϕ1.

Finally we say w |= ϕ iff w, 0 |= ϕ.
3) Linear Time Property: A linear time (LT) property

P over atomic propositions AP is a subset of (2AP)ω .

An LT property P is called a safety property if a word

w belonging to P is equivalent to the following: for all

p ∈ pref({w}) there exists s ∈ (2AP)ω such that ps ∈ P .

An LT property P is called a liveness property if for all

p ∈ (2AP)∗ there exists s ∈ (2AP)ω such that ps ∈ P .

It is well known that any LT property can be written as

the conjunction of a safety property and a liveness property

[3]. In particular, such decomposition is not unique but

a canonical sharp one exists [3]. That is, there exists a

decomposition P = P �
safe ∩P �

liveness, such that for any other

decomposition P = Psafe ∩ Pliveness, one has P �
safe ⊆ Psafe

and Pliveness ⊆ P �
liveness.

Given an LTL formula ϕ (not necessarily excluding next
operator) over atomic proposition set AP , the words satis-
fying ϕ, i.e., Word(ϕ) := {w ∈ (2AP)ω | w |= ϕ}, is
a linear time property over the same AP . In particular, this
LT property is ω-regular, which can be equivalently described
by a nondeterministic Buchi automaton (NBA) [3]. By LT
property decomposition,

Word(ϕ) = Wordsafe(ϕ) ∩Wordliveness(ϕ). (4)

By [2], two new NBA’s can be constructed (from

the automaton that generates Word(ϕ)), one generates

Wordsafe(ϕ), and the other generates Wordliveness(ϕ). Con-

verting these two new NBA’s into LTL formulas ϕsafe,

ϕliveness, we have ϕ = ϕsafe ∧ ϕliveness.
In this paper, we consider a special type of LTL\©

formula that specifies an absolutely decomposable property,

which is defined as follows.
Definition 1: Let P ⊆ (2AP)ω be a property over set AP .

Property P is called absolutely decomposable if there exists

a decomposition P = Psafe ∩ Pliveness, such that
• Psafe is an absolute safety property, i.e., it is a safety

property, and p ∈ pref(Psafe), w ∈ Psafe implies that

pw ∈ Psafe;

• Pliveness is an absolute liveness property, i.e., it is a

liveness property, and p ∈ pref(Pliveness), w ∈ Pliveness

implies that pw ∈ Pliveness.

Note that pref(Pliveness) = (2AP)∗, thus the definition of

absolute liveness coincides with the one given by [1]. Some

useful results are listed and proven in Appendix A.

4) Two-player Temporal Logic Game: The systems (both

regular and faulty ones) studied in this paper are nondeter-

ministic, the actual evolution of the system can be viewed as

the outcome of a two player game between the controller and

the environment. In each round of the game, the controller

picks an action first, then the environment picks a transition

that is available under the current state and action [13]. More

formally, given a finite transition system TS = (Q,A,→
, AP, L), a control strategy is a partial function μ : (Q ×
A)∗×Q → A that assigns a next-step action based on execu-

tion history, and an environment strategy η : (Q×A)∗ → Q
defines the next-step state. The μ-η-controlled execution

starting from initial state q0, denoted by ρμ-η(q0) is an execu-

tion
(
q(0), a(0)

)(
q(1), a(1)

)(
q(2), a(2)

)
of TS such that (i)

q(0) = q0, (ii) a(t+1) = μ
(
q(0), a(0), · · · , q(t), a(t), q(t+

1)
)
, and (iii) q(t + 1) = η

(
q(0), a(0), · · · q(t), a(t)). The

objective of the controller is to give a strategy μ so that the

words wρμ-η(q0) generated by all the μ-η-controlled execu-

tions starting from q0 satisfy some given LTL\© formula ϕ,

regardless of the move η of the environment. Such a strategy

is called winning for initial state q0. We define the maximum
winning set Win(ϕ, TS) to be the set of all states that can

have a winning strategy, i.e., Win(ϕ, TS) := {q0 ∈ Q |
∃μ : ∀η : wρμ-η(q0) |= ϕ}. We say W is a winning set if

W ⊆ Win(ϕ, TS).

III. PROBLEM STATEMENT

In this paper we consider synthesizing correct-by-
construction controller that leads to a graceful degradation
for an finite transition system with fault configuration set
F = {f1, . . . , fM}. The correct behavior of the closed-loop
system, i.e., the so called graceful degradation, is specified
by the following LTL\© formula:

Φ =
∧

fi∈F

(♦�fi → ϕi) , (5)

where ϕi is an LTL\© formula specifying the system’s

desired behavior when the final fault configuration is fi ∈ F .

Eq. (5) says: if the fault configuration eventually stays at

fi, the specification ϕi associated with this fault is achieved.

Note that the fault status of a faulty system is guaranteed to

reach a specific configuration fi ∈ F and stays there forever.

This is because fault set F is finite and a fault only transits

into its successors in F , hence there can be only finitely

many transitions.

We now formally define the two problems considered in

this paper.

Problem 1: [Synthesis with Immediate Fault Detection]

Given a fault configuration F , let TSF be finite transition

system with fault configuration F , and let Φ be an LTL

formula (over the same AP) in the form of Eq. (5). Assuming

that a fault is detected immediately after it occurs, find a

winning set W ⊆ Win(TSF,Φ) and the winning strategies

associated with each state in the set W .

544

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 30,2022 at 02:43:25 UTC from IEEE Xplore. Restrictions apply.

Problem 2: [Synthesis with Delayed Fault Detection]

The problem is stated the same as Problem 1, except that

any fault fi ∈ F requires at most time Tj to detect and

isolate.

IV. SOLUTION APPROACH

A. Solution to Problem 1

This part gives an algorithm that solves Problem 1 in

a recursive manner. We start with introducing the idea of

the proposed algorithm in an intuitive way. We then explain

the meaning of the returned values of the algorithm, and

comment on how these returned values can be used to solve

Problem 1. Finally the correctness of the algorithm under

certain assumptions is stated.

First, notice that a major challenge in solving Problem

1 is: the final fault configuration is not known in advance,

nor is the time this fault occurs. Therefore, the controller

has to assume the current fault configuration fi is the

final one, and give a strategy that achieves the specification

associated with the current configuration. However, unless

no other faults are strictly more severe than the current one,

there is always a chance for the system to further degrade.

Therefore, the controller must also maintain the capability to

achieve the specifications for possible succeeding faults fj .

In particular, this requires the following to hold in case the

system degrades to fault configuration fj :

(I1) (bad prefix issue) the finite word generated by the old

strategy does not violate the new specification ϕj ,

(I2) (succeeding strategy issue) there is a new strategy to

achieve specification ϕj starting from the current state.

Finally note that the argument also applies to the new fault fj
and its succeeding configurations, if any. This hence suggests

a recursive algorithm.

The above intuition is formalized by Algorithm 1.

1) Inputs: Algorithm 1 takes a system TSF, an LTL\©
formula Φ in form of Eq, (5), and a fault configuration fi
as inputs. Fault fi can be seen as the initial configuration.

Note that a faulty system always starts from being healthy

by definition, here fi is used to track the recursion.
2) Outputs: Algorithm 1 returns set Wi as a winning set

w.r.t. specification Φ when system TSF starts from fault
configuration fi. Ki := {Kj}fj�fi is a collection of maps
Kj , each map Kj relates a state to a strategy. It might be
helpful to think Kj(q) as a strategy that achieves specifica-
tion ϕj if the system starts from state q and stays at fault
configuration fj forever. The fault-tolerant strategy, with
initial fault fi and initial state q0, can be then extracted from
Ki by appending strategy fragments of Kj(q)’s according
to the latest fault status and the recent states after that fault
occurring. Formally, this fault-tolerant strategy at time t is
defined as:

μ
((

q(0) = q0, f(0), a(0)
) · · · (q(t), f(t)))

=Kn

(
q(s)

)((
q(s), a(s)

)
, · · · (q(t− 1), a(t− 1)

)
q(t)

)
, (6)

where n in “Kn” is the subscript of latest fault f(t), and

s = min
0 ≤ τ ≤ t

f(τ) = f(t)

τ. (7)

Finally the function also returns an LTL formula ψi called

strengthened formula, which is obtained by strengthening ϕi

by additional safety specifications. ψi can be seen as the

specification of an overall system that captures all possible

degradations from current fault fi.
3) Recursion: Algorithm 1 repetitively calls itself until

the worst faults are achieved as base cases. In each round

of recursion, we need the following two oracles. In what

follows we always assume the two oracles are sound.

(1) [ψsafe
j , ψliveness

j] = Decomp(ψj) does the sharpest LT

property decomposition;

(2) [Wi,Ki] = Win(ψi, TSi) returns the maximum win-

ning set Wi, and a map Ki associating a state from Wi

with a winning strategy, so that all executions of TSi

under such strategy satisfy LTL\© formula ψi.

If a worst fault is reached, function WinF simply returns

the normal winning set and strategies, because the system

will not further degrade from there. Otherwise a further

degradation is possible. To avoid generating prefixes that

violate the specification for the final fault, we strengthen the

current specification by ψsafe
j ; to guarantee the existence of

succeeding strategies, we strengthen the current specification

by �Wj where Wj is the winning set returned by deeper

recursions. Finally oracle Win is called to synthesize the

winning set w.r.t. specification ψi and this finishes the round

of the recursion.

Algorithm 1 [Wi,Ki, ψi] = WinF(Φ, TSF, fi)

1: Initialize Wi = ∅, Ki = ∅, ψi = ϕi

2: if fi ∈ max(F) then
3: [Wi,Ki] = Win(ϕi, TSi)
4: Ki = {Ki}
5: else
6: for fj ∈ succ(fi) do
7: [Wj ,Kj , ψj] = WinF(Φ, TSF, fj)
8: [ψsafe

j , ψliveness
j] = Decomp(ψj)

9: ψi = ϕi ∧ (�Wj) ∧ ψsafe
j

10: [Wi,Ki] = Win(ψi, TSi)
11: Ki = Kj ∪ {Ki}
12: return Wi, Ki, ψi

Theorem 1: Assume that each ϕi specifies an absolutely

decomposable property, then Algorithm 1 is sound in the

sense that every state in W1 is a winning set w.r.t. overall

specification Φ, with each state in W1 equipped with a

winning strategy defined by Eq. (6).

Proof of Theorem 1 can be found in Appendix B.
As mentioned earlier at the end of section II-B, faulty

system TSF can be modeled by a regular transition system
with state space Q × F . Problem 1 hence can be solved
theoretically by solving a Rabin game [4], whose complexity
is given by

O
((

|A| |Q| |F | 2(2|Φ||Φ)|
)2k

)
, (8)

where |A| is the size of action set, |Q| is size of state space of

a regular system for each fault configuration, |F | is number

545

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 30,2022 at 02:43:25 UTC from IEEE Xplore. Restrictions apply.

of faults, |Φ| is the length of LTL formula in Eq. (5), and k is

the number of accepting pairs in associated Rabin automaton,

which is a small number that is usually equal to 1 [6].
The complexity of Algorithm 1, ignoring the complexity

for LTL formula decomposition, is given by

O
(
|F |

(
|A| |Q| 2(2|ϕ||ϕ)|

)2k
)
, (9)

where |ϕ| = maxi:fi∈F |ϕi|. The complexity of our ap-

proach is linear in |F |, the number of faults, while the

complexity in Eq. (8) contains term O(|F | 2(2|Φ||Φ)|)2k)
where |Φ| is linear in |F |.
B. Solution to Problem 2

In this part, we modify Algorithm 1 to solve a special

class of instances of Problem 2. In what follows, we first

briefly discuss the challenges when there are delays for

fault detection. Then we restrict ourselves to the problems

in which the considered fault configuration set is a chain.

Such problems allow a solution by a simple modification to

Algorithm 1.

We first address the challenges caused by detection delay.

Assume that the system degrades from configuration fi to

fj , there will be a time period, called uninformed execution
horizon, within which the latest degradation is not known

to the controller. This time horizon starts from the instant

when transition (fi, fj) happens, and lasts for at most time

Tj by our detectability assumption. Within the uninformed

execution horizon, the controller will assume that the evolu-

tion is governed by original system TSi and apply the old

strategy, while the system dynamics evolves according to the

transitions of the new system TSj . As a result, two things

may go wrong during the uninformed execution horizon, i.e.,

(I3) (bad prefix issue) the wrongly-controlled partial exe-

cution may violate specification ϕj for some possible

succeeding fault configuration fj � fi;
(I4) (succeeding strategy issue) the execution may be led to

parts of the state space where no strategies are available

to achieve specification ϕj for some succeeding faults.

Note that the bad prefix issue (I3) cannot be solved by

simply applying Algorithm 1. In Algorithm 1 (line 9), the

specifications under succeeding faults are taken into consid-

eration when synthesizing controller for current fault fi. But

the synthesis is done for system TSi, not TSj . Within the

uninformed execution horizon, the controller applies strategy

designed for system TSi while the system evolves as TSj .

Therefore the outcome prefix may still violate strengthened

formula ψi, hence violate ψsafe
j and the specifications for the

succeeding faults. For a similar reason, issue (I4) cannot be

solved by simply enforcing �Wj . Because �Wj may still be

violated if the controller applies strategy designed for TSi

while the system evolves as TSj .

As a preliminary step to solving Problem 2, in what

follows in the paper, we consider a special class of faulty

systems whose fault configuration set F is a chain. That

is, for any fi, fj ∈ F , fi and fj are comparable. Without

loss of generality, we assume that f1 � f2 � · · · � fM .

In order to solve the two challenges raised above for such

special systems, we modify Algorithm 1 in two aspects. In

line 10 of Algorithm 1, (i) pair (ψi, TSi) is replaced by a

pair (ψi
′, TS′) with so called one-step-margin, (ii) oracle

Win is strengthened by some invariance restrictions. Next

we explain these two modifications in details.

1) One-Step-Margin by Positive Normal Form: To solve

issue (I3), we define a pair (ψ′
i, TS

′
i) with one-step-margin

for a given pair (ψi, TSi). System TSi is the subsystem

associated with fault fi of a faulty system TSF, whose fault

configuration set F = {f1, · · · , fM} is a chain. We assume

that fi+1 is the only successor of fault fi.
We first introduce the following notations for the given

regular finite transition system TSi = (Q,A,→i, AP, Li).
For all π ∈ AP , define [π]i := {q ∈ Q | π ∈ Li(q)} and
[¬π]i := AP \ [π]i. For a state set S ⊆ Q, define its one-
step-out set to be

Outi(S) := {q ∈ S |∃a ∈ A, q′ /∈ S :

(q, a, q′) ∈→i ∪ →i+1}, (10)

where →i+1 is the transition relation for the only succeeding

system TSi+1.

Now the pair (ψ′
i, TS

′
i) is defined as follows.

• AP ′ = AP ∪ {π′ | π ∈ AP}, with π′ representing the

“negation” of proposition π.
• TS′

i = (Q,A,→i, AP ′, L′
i) is a finite transition system,

where Q, A, → are the same as the underlying transition
system TSi above, and L′

i : Q → 2AP ′
is defined to be

such that

∀π ∈ AP : π ∈ L′
i(q) ⇔ q ∈ [π]i \ Out([π]i)

π′ ∈ L′
i(q) ⇔ q ∈ [¬π]i \ Out([¬π]i) (11)

• For the given LTL\© formula ψi, write ψi in positive

normal form [3], and replace every ¬π in the formula

by π′ ∈ AP ′. We denote the obtained formula by ψ′
i.

The usefulness of one-step-margin pair (ψ′
i, TS

′
i) is as

follows. First, if a strategy achieves ψ′
i on system TS′

i, it

also achieves ψi on system TSi. Secondly, if the system

degrades from TSi to TSi+1, and ψ′
i is violated at some

point by the old strategy, ψi will not be violated for at least

one more step. Note that this one step margin is enough for

the detector to identify the fault. This is because formula

ψ′
i is already violated, while we know ψ′

i should have been

achieved if the system evolved with TSi. Based on the above

argument, one can synthesize a strategy that achieves ψ′
i on

TS′
i, then apply this strategy to TSi, the prefix generated is

guaranteed not to violate ψi before the end of uninformed

execution horizon. This prefix, by the assumption of absolute

decomposability of ϕi (and hence ψi), is a good prefix in

terms of the specification of the final fault (see proof of

Theorem 1, observation (b)). This hence solves issue (I3)

stated at the beginning of this section.

Also note that the one-step-margin modification only

works when the faults form a chain. The reason is that,

one-step-margin is only enough for fault detection, but not

necessarily enough for the fault isolation whenever there are

multiple possible succeeding faults. As will be discussed in

section V, however, such one-step-margin modification is not

necessary for some special cases.

546

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 30,2022 at 02:43:25 UTC from IEEE Xplore. Restrictions apply.

2) Synthesis with Invariance Restrictions: We now con-

sider solving the succeeding strategy issue (I4). For this

purpose, we modify oracle Win. Before line 10 of Algorithm

1 where Win is called, a line is inserted, in which we search

for the maximum controlled invariant set Cj ⊆ Wj , under

the dynamics of TSj . A map Ij : Cj → 2A is also found, so

that Cj is invariant as long as we keep applying any action

from Ij(q) at any state q ∈ Cj . Such set Cj and map Ij can

be found by fixed-point type algorithms given in [11]. Then

oracle Win is called as before, except that (i) the input is

replaced by the one-step-margin pair (ψ′
i, TS

′
i) , and (ii) the

synthesis is restricted within state set Cj , while the actions

available at each state q ∈ Cj are restricted within Ij(q).
By the above modification, the states will always stay

within Cj ⊆ Wj even after the system degrades from fault

configuration fi to fj . This hence guarantees a succeeding

strategy after an uninformed execution horizon of any length.

Also note that the chain structure assumption on the fault

set is not essential for this modification to work. When there

are multiple possible faults fj succeeding current fault fi,
an intersection set C can be computed as

⋂
j:fj∈succ(fi)

Cj ,

and a map I can be defined to be such that I(q) =⋂
j:fj∈succ(fi)

Ij(q). Then winning set Wi can be synthesized

by Win restricted to state set C and control actions in I(q).
We summarize the soundness of the above modifications

by the following proposition, whose proof follows from the

soundness of Algorithm 1 and the above arguments.

Proposition 1: In addition to the hypothesises in Theorem

1, assume that the considered fault set is a chain, and that a

further fault does not occur during any uninformed execution

horizon. Algorithm 1 is sound for Problem 2, if its 10th line

is replaced with [Wi,Ki] = Win(ψ′
i, TS

′
i), where (ψ′

i, TS
′
i)

is the one-step-margin pair of (ψi, TSi), and the synthesis

in oracle Win is done with states restricted in controlled

invariant set Cj , and with the actions at q ∈ Cj restricted in

invariant action set Ij(q).

V. DISCUSSION

Several discussions are presented below, regarding to the

two modifications of Algorithm 1 in section IV-B, and the

relation between this work and the previous one.

First, note that an invariance property is absolute safety

property (Proposition 3 in Appendix A). Also note that if

ψsafe
j (line 9 of Algorithm 1) specifies an invariance property,

then Word(�Wj) ⊆ Word(ψsafe
j). This suggests that the

bad prefix issue (I3) is automatically solved if the synthesis in

oracle Win is restricted within controlled invariant set Cj ⊆
Wj . Hence there is no need to create the one-step-margin

pair, which leads to a potentially more conservative solution.

In this case, since no additional time margin is needed, it is

not required to assume that the faults form a chain.

Secondly, if strengthened formula ψj in Algorithm 1

specifies a so called suffix-closed property1, it is not hard

to show that any winning set Wj w.r.t. ψj is controlled

1A property P over set AP is called suffix-closed, iff any suffix of a
word in P also belongs to P , i.e., uv ∈ P ⇒ v ∈ P .

(,)

{ }
{ , }
{ , }∅

∅
{ }

{ } { }
∅ ∅

Fig. 1: Faulty system TSF. Left: regular system TS1 associated
with fault f1, right: TS2 associated with fault f2. Different colors
marked different propositions predicate: w (purple), x (green box),
y (orange), z (grey).

invariant under the corresponding winning strategies. This

suggests that Cj , the largest controlled invariant set contained

by winning set Wj , is equal to Wj .

In previous work [14], the fault structure is not a chain,

but we only consider reach-avoid-stay type of requirements

for each fault configuration. That is, ϕi’s in Eq. (5) are in

the form (�si)∧ (♦�gi), where si is an atomic proposition

marking states that are considered to be safe at fault configu-

ration fi, and gi is an atomic proposition that marks the goal

state. Note that �si specifies an invariant property, while

♦�gi specifies a suffix-closed, absolute liveness property.

Moreover, it is not hard to show by induction that ψi’s in

Algorithm 1 can also be written as a conjunction of an

invariance formula and ♦�gi. By the discussions in the

above paragraphs, the controller synthesis with detection

delay can be simply solved by Algorithm 1 with invariant

restrictions proposed in section IV-B.2

Finally, a notable property of our solution approach to

Problem 2 is that it does not rely on the value of T , the upper

bound for the detection delay. Instead, it is sufficient to know

that T exists, i.e., is finite. This is a result of the following

facts. First, one-step-margin is enough for fault detection

in a chain. Secondly, we synthesize controllers restricted to

invariant actions of Cj ⊆ Wj , hence the states stay inside

the winning set Wj of the next fault for arbitrarily long time.

VI. EXAMPLE

In this section we present a toy example that illus-
trates the proposed solution approach. Consider a faulty
system TSF = (Q,F,A,→TS ,→F , AP, L), where Q =
{q1, q2, q3, q4, q5}, F = {f1, f2}, A = {a, b}, AP =
{w, x, y, z}. The only fault transition in →F is (f1, f2).
The system transitions →TS and the labeling function are
defined in Fig. 1. The graceful degradation of system TSF

is specified by an LTL\© formula in form of Eq. 5, where

ϕ1 =(�¬z) ∧ (♦�x) ∧ (�♦w) ∧ (�♦y), (12)

ϕ2 =(�¬z) ∧ (♦�x) (13)

In what follows we compute the fault tolerant winning set

WinF(Φ, TSF) for both cases with and without detection

delay, to demonstrate the difference introduced by the delay.

1) Winning Set without Detection Delay: To find the fault

tolerant winning set, Algorithm 1 starts from fault f2 as base

case. Winning set W2 can be found as {q2, q3, q4}. We then

547

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 30,2022 at 02:43:25 UTC from IEEE Xplore. Restrictions apply.

go to fault f1, and strengthen ϕi as ψ1 = ϕ1 ∧ (�W2) ∧
(�¬x), where the last term (�¬x) is the safety part of ϕ2.

Finally we compute W1 = Win(ψ, TS1) = {q2, q3, q4}, and

we claim that W1 is a fault tolerant winning set W .

Note that q1 /∈ W , even though a strategy can achieve ϕ1

starting from q1 on system TS1. This is because the fault may

occur when we are at q1. In that case the system degrades

to TS2 and no succeeding strategy exists to avoid state q5,

and hence to achieve ϕ2.

2) Winning Set with Detection Delay: Assume a finite

delay is required to detect the fault, we compute the fault

tolerant winning set and show it is different from the above

result. First note that the safety part of ϕ2 specifies an

invariance property. As discussed in section V, the one-step-

margin is not needed in this example. Then, similar as before,

Algorithm 1 starts from fault f1 and computes winning set

W1 = {q2, q3, q4}. We then compute Cj as the largest

controlled invariant set in W2. In this example, C2 = W2.

Map I2 is also found such that I2(q) contains the actions at

state q that make C2 invariant. In this example, I2(q2) = {b},

I2(q3) = I2(q4) = {a, b}. Finally the recursion goes back

to fault f1, and the fault tolerant winning set is synthesized,

with the states restricted to set C2, and with the actions at

state q restricted to I2(q). In the example W1 = {q3, q4},

and we claim the fault tolerant winning set W = W1.

Unlike the fault tolerant winning set without detection

delays, state q2 is not inside the winning set W . This is

because action a /∈ I2(q2), and is hence forbidden at state q2
in the synthesis. To see why this it is necessary to exclude

state q2 from W , we consider the following scenario. If fault

occurs at state q2, the controller will not be informed at once.

Instead, the controller assumes that the system evolves as

TS1 and tries to achieve ϕ1. Note that to achieve ϕ1 on

TS1, the controller has to take action a whenever the state

is at q2. As a result the actual system evolves as TS2 and

may bring the state to s1, from where the real specification

ϕ2 can not be achieved.

VII. APPENDIX

A. Properties of Absolutely Decomposable Property

In this part, some useful results regarding to absolutely

decomposable properties are presented.

First, we give a lemma about general safety properties that

is used in the later proofs.

Lemma 1: Let P1 and P2 be two safety property over AP ,

pref(P1) = pref(P2) implies that P1 = P2.

Proof: Assume for a contradiction that pref(P1) =
pref(P2) but P1 	= P2. Without loss of generality, this

means there exists w ∈ P1 such that w /∈ P2. Since w /∈ P2

and P2 is a safety property, we immediately know that w
has a bad prefix wt := w(0)w(1) · · ·w(t) /∈ pref(P2).
But on the other hand, w ∈ P1 and this implies that

wt ∈ pref(P1) = pref(P2), which is a contradiction.

The following propositions are used in proving soundness

of Algorithm 1.

Proposition 2: Let P be an absolutely decomposable

property, then for all p ∈ pref(P), w ∈ P , pw ∈ P .

Proof: Let p ∈ pref(P) and w ∈ P . First, notice the

fact that P = Psafe ∩ Pliveness. This implies that (i) p ∈
pref(P) ⊆ pref(Psafe), (ii) p ⊆ pref(Pliveness), (iii) w ∈
Psafe and w ∈ Pliveness. By bullet 1 in Definition 1, we

have pw ∈ Psafe, and by bullet 2, pw ∈ Pliveness. Thus

pw ∈ P = Psafe ∩ Pliveness.

Proposition 3: An invariance property P is an absolute

safety property.

Proposition 4: Let P1, P2 be two absolute safety proper-

ties, P = P1 ∩ P2 is also absolute safety property.

Proof: Proposition 4, 3 easily follow from the definition

of absolute safety properties.

Proposition 5: Let P be an absolutely decomposable

property with the specific decomposition P = Psafe ∩
Pliveness, then pref(P) = pref(Psafe).

Proof: From the proof of Proposition 2, we already

know that pref(P) ⊆ pref(Psafe). Next we show the other

direction. For this purpose, let p ∈ pref(Psafe) and w ∈
P be arbitrary. Next we show pw ∈ P and conclude p ∈
pref(P).
(a) First, note that p ∈ pref(Psafe) and that w ∈ P ⊆ Psafe.

By bullet 1 in Definition 1, we have pw ∈ Psafe.

(b) Secondly, also note that p ∈ pref(Pliveness) = (2AP)∗,

and w ∈ P ⊆ Pliveness. By bullet 2 in Definition 1, we

have pw ∈ Pliveness.

Combining (a) and (b), we have pw ∈ Psafe ∩Pliveness = P .

Therefore p ∈ pref(P) and this finishes the proof.

Proposition 6: Let P be an absolutely decomposable

property with a specific decomposition P = Psafe∩Pliveness,

and let P = P �
safe ∩ P �

liveness be the sharpest decomposition,

then Psafe = P �
safe.

Proof: By P = P �
safe ∩ P �

liveness, we have P ⊆ P �
safe.

This hence gives
pref(P) ⊆ pref(P �

safe). (14)

On the other hand, since P �
safe comes from the sharpest

decomposition, P �
safe ⊆ Psafe. This implies that

pref(P ∗
safe) ⊆ pref(Psafe). (15)

Combine (14), (15), we have

pref(P) ⊆ pref(P �
safe) ⊆ pref(Psafe). (16)

But by Proposition 5, we know that pref(P) = pref(Psafe),
which forces all “⊆” in Eq. (16) to be “=”. Thus we have

pref(P �
safe) = pref(Psafe). Applying Lemma 1, we have

P �
safe = Psafe.

Proposition 7: Let P1 be an absolutely decomposable

property under decomposition P1 = P1,safe ∩ P1,liveness,

and let P2,safe be an absolute safety property, then P =
P1 ∩ P2,safe is absolutely decomposable under P = Psafe ∩
Pliveness, where Psafe = P1,safe ∩ P2,safe and Pliveness =
P1,liveness.

Proof: First note that Psafe is indeed a safety property

and Psafe ∩ Pliveness = (P1,safe ∩ P2,safe) ∩ Pliveness =
P2,safe ∩ (P1,safe ∩ P1,liveness) = P is a valid decomposi-

tion. Moreover, by Proposition 4, Psafe is a absolute safety

property. By definition P is absolutely decomposable, and

Psafe = P1,safe∩P2,safe is the unique absolute safety property

involved in the decomposition by Proposition 6.

548

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 30,2022 at 02:43:25 UTC from IEEE Xplore. Restrictions apply.

B. Proof of Theorem 1

Assume the actual transitions of faults are given by

(fi1 , fi2), (fi2 , fi3), · · · , (fin−1 , fin), where fi1 is the initial

fault and fin is the final fault, and (fik−1
, fik) ∈→F are the

nontrivial degradations.

Let Wik ’s be the winning sets and ψik ’s be the strength-

ened formulas returned in each round of recursion. Regarding

to these sets and formulas, we can make the following

observations.

(a) Wi1 ⊆ Wi2 ⊆ · · ·Win . By soundness of oracle Win,

Wik−1
is the winning set w.r.t. specification ψik−1

. But

note that ψik−1
is a conjunction of �Wik with other

formulas (see line 9, Algorithm 1), thus Wik−1
⊆ Wik .

This hence proves the nested relation of Wik ’s because

k is arbitrary in the above argument.
(b) pref

(
Word(ψi1)

) ⊆ pref
(
Word(ψi2)

) ⊆ · · · ⊆
pref

(
Word(ψin)

) ⊆ pref
(
Word(ϕin)

)
. To see this,

recall line 9 of Algorithm 1, we have

Word(ψik−1)

=Word(ϕik−1) ∩Word(�Wik) ∩Word(ψsafe
ik), (17)

where Word(ϕik−1
) is absolutely decomposable by as-

sumption, Word(�Wik) is an absolute safety property

by Proposition 3, and Word(ψsafe
ik

) is absolute safety

property presuming that ψik is absolutely decompos-

able. One can easily verify by induction that Word(ψik)
is absolutely decomposable, using Proposition 3, 4, 7.
Next applying Proposition 5, this implies

pref
(
Word(ψik)

)
= pref

(
Word(ψsafe

ik)
)

(18)

Also note that ψik−1
is obtained by conjunction of ψsafe

ik
and other formulas (line 9, Algorithm 1), hence

pref
(
Word(ψik−1)

) ⊆ pref
(
Word(ψsafe

ik)
)
. (19)

Combining Eq. (18) (19), we have

pref
(
Word(ψik−1)

) ⊆ pref
(
Word(ψik)

)
. (20)

With the same argument used to obtain Eq. (19),

pref
(
Word(ψin)

) ⊆ pref
(
Word(ϕin)

)
. (21)

Now to prove the soundness, consider an execution starting
from q0 ∈ Wi1 under control strategy μ constructed by Eq.
(6) and arbitrary environment strategy η

ρμ-η(q0) =
(
q(0) = q0, f(0), a(0)

)(
q(1), f(1), a(1)

) · · · , (22)

and the word generated by this execution

wρμ-η(q0) = w(0)w(1)w(2), · · · . (23)

First, let tik denote the time instant when fault transition

(fik−1, fik) happens. By observation (a), it is not hard to

show by induction that q(t) ∈ Wik for t ≤ tik .

1◦ Base case: k = 2. The execution starts from q(0) =
q0 ∈ Wi1 , and the strategy enforces ψi1 . Hence �Wi2 ,

which is part of ψi1 by construction, is true before the

system degrades at time instant ti2 .

2◦ As induction hypothesis, assume that for all k ≤ m,

we have q(t) ∈ Wik for t ≤ tik Now we move to

k = m + 1. First, by observation (a), Wik ⊆ Wim+1

for all k ≤ m. The hypothesis immediately becomes

q(t) ∈ Wim+1
for t ≤ tim , and what remains to be

verify is when tim ≤ t ≤ tim+1 . Again by hypothesis,

we know q(tim) ∈ Wim+1
. But by construction, strategy

μ enforces the succeeding execution, which starts from

q(tim), to satisfy �Wim+1
. In other words, for tim ≤

t ≤ tim+1 , we have q(t) ∈ Wim+1 . This hence finishes

the induction step.
This immediately implies that q(tin) ∈ Win .

Next we show that the finite word generated until time

tin belongs to pref
(
Word(ϕin)

)
using observation (b). Let

wik := w(tik) · · ·w(tik+1
− 1) be the word segment that is

generated under fault fik . Note that this segment is generated

starting from q(tik) ∈ Wik (by the result from the last

paragraph), under the winning strategy designed to achieve

ψik . Therefore wik ∈ pref
(
Word(ψik)

)
. By observation

(b), this means w := wi1wi2 · · ·win ∈ pref
(
Word(ϕin)

)
.

To this point, we have shown that when the final fault

occurs at time tin , the state q(tin) is in the winning set

Win for this final fault. We also know that finite word

w = w(0) · · ·w(tin − 1) generated so far belongs to

pref
(
Word(ϕin)

)
. Note that the succeeding strategy will

focus on achieving ϕin starting from state q(tin), where the

strategy is well defined because q(tin) ∈ Win . Moreover, this

strategy generates an execution v = v(tin)v(tin + 1) · · · ∈
Word(ϕin). Recall that ϕin is absolutely decomposable. By

Proposition 2, the overall word wv |= ϕin . This proves the

soundness of Algorithm 1 under the given assumptions.

REFERENCES

[1] B. Alpern and F. B. Schneider. Defining liveness. Information
processing letters, 21(4):181–185, 1985.

[2] B. Alpern and F. B. Schneider. Recognizing safety and liveness.
Distributed computing, 2(3):117–126, 1987.

[3] C. Baier and J. Katoen. Principles of Model Checking. MIT Press,
2008.

[4] C. Belta, B. Yordanov, and E. A. Gol. Formal Methods for Discrete-
Time Dynamical Systems. Springer, 2017.

[5] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Algorithms
for omega-regular games with imperfect information. In International
Workshop on Computer Science Logic, pages 287–302. Springer, 2006.

[6] S. Coogan, M. Arcak, and C. Belta. Formal methods for control of
traffic flow. 2016.

[7] F. Harirchi, Z. Luo, and N. Ozay. Model (in) validation and fault de-
tection for systems with polynomial state-space models. In American
Control Conference (ACC), 2016, pages 1017–1023. IEEE, 2016.

[8] F. Harirchi and N. Ozay. Model invalidation for switched affine
systems with applications to fault and anomaly detection. IFAC-
PapersOnLine, 48(27):260–266, 2015.

[9] J. Liu and N. Ozay. Finite abstractions with robustness margins for
temporal logic-based control synthesis. Nonlinear Analysis: Hybrid
Systems, 22:1–15, 2016.

[10] G. E. Monahan. State of the art–a survey of partially observable
markov decision processes: theory, models, and algorithms. Manage-
ment Science, 28(1):1–16, 1982.

[11] P. Nilsson and N. Ozay. Incremental synthesis of switching protocols
via abstraction refinement. In Proc. of IEEE CDC, pages 6246–6253,
2014.

[12] P. Tabuada. Verification and control of hybrid systems: a symbolic
approach. Springer, 2009.

[13] W. Thomas, T. Wilke, et al. Automata, logics, and infinite games: a
guide to current research, volume 2500. Springer Science & Business
Media, 2002.

[14] L. Yang, N. Ozay, and A. Karnik. Synthesis of fault tolerant switching
protocols for vehicle engine thermal management. In American
Control Conference (ACC), 2016, pages 4213–4220. IEEE, 2016.

[15] X. Yin and S. Lafortune. Synthesis of maximally permissive supervi-
sors for partially-observed discrete-event systems. IEEE Transactions
on Automatic Control, 61(5):1239–1254, 2016.

549

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 30,2022 at 02:43:25 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

